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Abstract

In this paper we show how tools from group theory can
be used to find invariants for time-changing illumination
changes. In the first part of the paper we give a brief
overview over the theory of one-parameter groups and their
invariants. In the second part we describe how the chro-
maticity coordinates of time-changing illumination spectra
can be described by one-parameter curves. Examples for
black-body radiators and measured illumination changes
are presented. In the last section we describe the invariants
for several selected one-parameter groups and the black-
body radiators. The derivation of the differential equations
and their solution can be done with the help of symbolic
mathematical software packages like Maple and we de-
scribe a simple Maple session in which the invariants are
constructed.

1. Introduction

An invariant is a function that does not change its values
under a given collection of transforms. The human vi-
sual system employs obviously many mechanisms that are
based on invariance principles. Color constancy, ie. the
ability to compensate the effects of changing illumination
conditions, is a typical example.

In this paper we first introduce invariants in the frame-
work of transformation groups where the set of transfor-
mations have a group theoretical structure. We summarize
the basic facts from invariant theory, give an overview over
the number of invariants and demonstrate how to construct
these invariants.

In the color science related part of the paper we show
how many color imaging situations can be described in the
framework of transformation groups. We first summarize
some facts from Principal Component Analysis of spectral
distributions that show that spectra can be described by co-
ordinate vectors in a cone. In the case of three-dimensional
coordinate vectors the length of the coordinate vector is re-
lated to the intensity of the spectra and a two-dimensional
vector, located on the unit disk, is related to chromatic-
ity. We then show that relevant sources such as black body

radiation and long series of time varying daylight illumina-
tions can be described by one-parameter subgroups. Inten-
sity changes are described by the scaling group and chro-
maticity changes by subgroups of the group SU(1,1), the
symmetry group of the unit disk. In this case we show how
invariant theory can be used to get a complete overview
over all invariants. We furthermore show how to compute
these invariants.

2. One-parameter subgroups and invariants

Let us first introduce the necessary mathematical concepts
used in the investigation of time-varying spectral distribu-
tions. We will describe the main ideas but omit a num-
ber of, important, technical details. The interested reader
can find the complete description in many textbooks such
as [16, 17, 18, 19].

Let W be a finite dimensional real or complex vector
space. For a real vector space we denote by K the space
of real numbers K = R and for a complex space K = C.
By G we denote a group of transformations acting on W,
ie:g: W — W,z — g(z) for all g € G. All groups
in this paper are matrix groups where the elements g €
G are n X n matrices. An G — inwvariant function is a
function f: W — K satisfying:

flg(@) = f();

A familiar example is the vector space of the real two-
dimensional plane, the transformations are the rotations
and an invariant is the length of a vector. In this case we
have:

Ve e W; Vge G, (1)

K = R,G=S0Q2),W=R?
2 _ l‘1>7g:M: CO.SOz sma)
X2 —sSIno CoS«
g{r) = Mz
f@) = Jaf+a3

In the simplest case the group depends only on one pa-
rameter. We define a one-parameter subgroup M(¢) as a
subgroup of a group G, defined for real values of ¢ having
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the properties:

M(t1 + t2)
M(0)

M(tl)M(tg) th, ts € R,
E (identity matrix).

2

The group action is the ordinary matrix multiplication, the
inverse of M(¢) is M(¢)~! = M(—t) and the neutral ele-
ment is M(0).

In this paper we focus first on group invariant func-
tions in connection with one-parameter subgroups. This is
relevant for color image processing since important chro-
maticity changes are described by one-parameter groups
as we will show later. Furthermore, the restriction to one-
parameter groups allows us to sketch the main properties
of the method with a least amount of technical difficulties.
The generalization to more general groups that depend on
a finite number of parameters can be found in the books
listed in the references.

Thus we consider the function f as invariant if it sat-
isfies:

fW-K,
FM(E) (@) = fla); VoeW; VieR;
M(t) is an one-parameter subgroups of G 3)
An invariant function under a one-parameter subgroup can
be considered as a function of the variable ¢. Since it is
invariant under variations of ¢ it must be a solution of the
differential equation:

d
A generalization to more general groups can be ob-
tained via infinitesimal generators and Lie algebras: for
a one-parameter subgroup M(¢) we define its infinitesimal
generator as the matrix X:

«_ M) M(t) ~E

dt t
Conversely, we can construct a one-parameter subgroup

M(¢) from a given infinitesimal generator X using the ex-
ponential map:

&)

l1=0= 0

tk
—XF4+ .. (6

t2
tX __ 2
e —E-l-tX-i-fQ!X +...+k!

M()
where E is the identity matrix. The infinitesimal matri-
ces X form the Lie algebra.

A generalization of one-parameter groups are groups
that depend on finitely many parameters. In our case it is
sufficient to consider groups with group elements of the

form
M = &1 Xit&Xot. +8nXn

N
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The elements X, ..., X,, define an n-dimensional vector
space with the additional operation of the Lie product that
makes it an n-dimensional Lie-algebra. More information
about Lie groups and Lie algebras can be found in the rel-
evant literature, such as [16, 17, 18, 19].

If the group is generated by n matrices Xy, as in Eq.(7)
then we get for each one-parameter group

M, (&) = exp(§pXk)

one differential operator Ty, = T}, and an invariant func-
tion f for the whole group must satisfy the system of par-
tial differential equations:

T.f =0fork=1,...n ®)

3. Time-changing illuminations and SU(1,1)

In this section we will now show how chromaticity proper-
ties of sequences of illumination spectra can be described
by one-parameter groups. It is well known that illumina-
tion spectra can be described by linear combinations of few
basis vectors. [1, 2, 3, 4, 5, 6, 7] Often the eigenvectors of
the input correlation matrix are taken as these basis vec-
tors. [2, 8,9, 10, 11, 12]

We denote in the following a spectral vector by s(\),
basis vectors by by () and the coefficients in the vector o.
We thus have:

K
s(\) &> arbr(N). ©)
k=0

Under the condition that by () has only positive entries we
found that the vectors o are located in a cone (see [13]). In
the case of three basis vectors (K = 2) this cone is given
by:

2

H = {(00,01,09) : 04 — 0} — 05 > 0}.

The basis function bo() is non-negative and the coeffi-
cient og is the scalar product of the spectrum and bg()\).
The coefficient oy is therefore related to the intensity of the
spectrum. The projected coefficients z = o1 /09 and y =
o2/0q define a point z 2 + 4y on the unit disk. Since
we factor out the intensity related coefficient oy we can
think of z as chromaticity coordinate of s(\).

For a sequence of time-changing illumination spectra
we get thus a sequence of points on the unit disk that de-
scribe the chromaticity changes of the illumination spec-
tra. We will show that such sequences can be described by
one-parameter groups and we describe a method how to
estimate the one-parameter group from the measurements.

The group SU(1,1) consists of all mappings that pre-
serve the hyperbolic geometry (defined by the hyperbolic
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length and angle) of the disk (more information about hy-
perbolic geometry can be found in [14, 15]). The hyper-
bolic distance on the unit disk is given by

dp(z,w) =2 arctanhM. (10)
|Z % w— 1]

and the group SU(1,1) if geometry preserving transforma-
tions consist of the matrices:

SU(1,1) = {M: ( ‘g 2 );|a|2— b2 = 1;a,be(C}

An element M € SU(1,1) acts as the fractional transfor-
mation on points z on the unit disk:
az+b

w=M(z) == . 11

& bz+a (b

The Lie algebra of the Lie group SU(1,1) is denoted

by su(1,1). It can be shown this Lie algebra forms a three-
dimensional vector space [18] with elements of the form

3
X = & (12)
k=1

Where the Jj, are given by:

i 0 0 1 0

The three real numbers &1, &2 and &5 define the coordinate
vector of X and together with a real parameter ¢ they de-
fine a curve on the unit disk as follows: given a starting
point z(0) on the unit disk, the coordinates & and the pa-
rameter ¢ we generate first the matrix X as in (12) and then
the curve by:

2(t) = M(t)(2(0)) = eX(2(0));t e R (13)

Given a set of spectra whose chromaticity properties
are described by the points {z, = (¥n,yn);n =1,..., N}
on the unit disk we developed in [20] two methods to find
a one-parameter subgroup connecting these points. We
used these methods to fit one-parameter curves to spec-
tra of black-body radiators and measured daylight spec-
tra. The daylight spectra describe spectral distributions
in Granada, Spain and Sweden. Figures 1, 2, 3 show the
measured chromaticity coordinates and the approximated
SU(1,1) curves. They show that the chromaticity proper-
ties of sequences of illumination changes can be well ap-
proximated by SU(1,1) curves.

4. SU(1,1) illumination invariants

We now construct invariants for illumination changes. As
before we describe the illumination spectrum by a series

expansion with coefficients 0y, 01, 02. Changing the in-
tensity of the illumination source amounts to a simultane-
ous (positive) scaling of the expansion coefficients and the
group action is thus given by

(00,01,02) — €° (00,01,02) (14)

which gives the partial differential equation for the invari-
ant f (Dy denotes partial derivation with respect to vari-
able number k):
df (e®og,e’01,€e°02)
ds

Solving this equation leads to the general solution

=o00Dof+0o1 D1 f+oaDof (15)

f (00,01, 05) = (22, 22) (16)
0o 00

which means that the general invariant is a function of the

ratios o /0g.

Next we construct invariants for chromaticity changes.
We first consider the simplest cases where the subgroups
are given by the three coordinate axis, ie. the differential
operators 77,75 and T3 defined by the coordinate vectors

(1,0,0)
(0,1,0)
= (0,0,1)

(517 527 53)

This leads to the partial differential equations

PDE; : % (x,9)(1 +y? — 2?) — Q%f(ay)y:r
PDE : 3% (z,y)(1+ 22 — y?) —2%f(x,y)yx
PDE s : QC%f(x, y)x — 2%f([);‘7 Y)Yy (17

where (z,y) denote chromaticity coordinates in the unit
disk.

For a general one-parameter group with coordinate vec-
tor (€1, &2, &3) we obtain the differential equation:

PDE: (y?6 — 226 — 2y&s + & — 22yéa) 2 f(z,y)
+(2%& + 2283 — y?& — 2wyl + 52),%]”(58&) (18)

Solving the partial differential equations (17) gives the fol-
lowing solutions:

Invariant ; : Fi (x* +y?)
2 _ 1 2
Invariant, : Fo <u>
y
2 _ 1 2
Invariantg : F3 (u) (19)
X

where the functions F}, are arbitrary functions of their ar-
guments. Solution F} shows, for example, that the gen-
eral invariant under this subgroup is a function of the ra-
dius 22 + y2 = |z|> which can be seen directly since
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the transformations generated by this element in the Lie-
algebra are the rotations of the unit disk. The invariant of a
general one-parameter group is the solution of differential
equation (18) and given by:

I—F (5?(—)05253 - x22 - Ey*+ -2+ ygggl))
: £3(—&3 — x&a +y&1)

(20)
For the Planck locus chromaticity the estimation pro-
cedure resulted in the three parameters £; = —3.54,&; =

0.45,&3 = —1.47. Plugging this into Equation (20) gives
the invariant

F 2025x2 — 6660x + 19879 — 52392y + 2025y>
P 45x — 148 + 354y

From a practical point of view it is interesting to note that
the differential equations and their invariants can be auto-
matically constructed with symbolic math programs like
Maple (see Appendix).

The number of functionally independent invariants is
given by the dimension of the space on which the group op-
erates (in our case three, given by the three coefficients o,)
and the dimension of the Lie-algebra. If the scaling group
and the chromaticity one-parameter group commute, then
the Lie-algebra has dimension two and there is one non-
trivial invariant. In the case where they do not commute
there are only the trivial constants as invariants.

5. Conclusion

We have shown that if a sequence of changing illumina-
tion spectra form a one-parameter group, then it is possible
to construct all functionally independent functions that are
invariant under these illumination changes.
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Figure 1: Granada twilight chromaticity sequence-49 spectra,
measured 29/March/1999-and the estimated SU(1,1) curve
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Figure 2: Swedish daylight chromaticity sequence-79
spectra, measured by SMHI 10/March/1993-and the esti-
mated SU(1,1) curve

— Blackbody locus
Estimated SU(1,1) curve

180

270

Figure 3: Blackbody locus-500 spectra ranged [4000..15000K -
and the estimated SU(1,1) curve
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A. Maple worksheet for computing invariants

We show here a simple worksheet created in Maple to compute the illumination invariants for SU(1,1) one-parameter

subgroups mentioned in the text
with(linalg) :
with (PDEtools) :
declare(g(x,y));
declare(f(r,g,b))'

im[1l] := matrix(2,2,[0,1,1, O]),

im[2] := matrix(2,2,[O,I, 01);

im[3] := matrix(2,2,[I,0,0, I1);

M := (t,a,b,c) -> evalm(exponential ((t*a)*im[1]+ (t*b)*im[2]+ (t*c)*im([3]));
xfun:=(t,a,b,c,x,y) ->evalc(Re(

(M(t,a,b,c) [1,1]1*(x+I*y)+M(t,a,b,c) )/
(M(t,a,b,c) [2,1]1*(x+I*y)+M(t,a,b, C)[ ) ])))-
yfun:=(t,a,b,c,x,y) ->evalc(Im(

(M(t,a,b,c) [1,1]*(x+I*y)+M(t,a,b,c) [1,2])/
(M(t,a,b,c) [2,1]* (x+I*y)+M(t,a,b, C)[ 2]1)));
dxdt0 := subs(t=0,diff (xfun(t,a,b,c,x, y),t)):
dydt0 := subs(t=0,diff (yfun(t,a,b,c,x,y),t))
xp0 := map(simplify,dxdt0,trig) :

yp0 := map(simplify,dydtoO,trig) :

pdexy := simplify( diff (g(x,y),

x) *xp0+diff (g(x,y),y) *yp0, trig) ;

pdel := map(simplify, subs (b=0,c=0,pdexy)) ;

pde2 := map(simplify, subs(a=0,c=0,pdexy)) ;
pde3 := map(simplify, subs(a=0,b=0,pdexy)) ;
sollgeneral := pdsolve ({pdexy}, [g]);

soll := pdsolve ({pdel}, [g])

sol2 := pdsolve ({pde2}, [g])

sol3 := pdsolve ({pde3}, [g])

plancksol := simplify(subs(a=-3.541512,b= 0.456053, c= -1.477389,sollgeneral)) ;
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